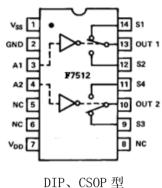
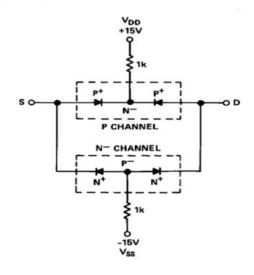
F7512 型 DI CMOS 保护模拟开关


一、概述

F7512 内含两个单刀双掷模拟开关,采用介质隔离 CMOS 工艺,可提供最高超出电源电 压±25 V 的过压保护。在拥有这些优势的同时,并不影响模拟开关的低导通电阻(75 Ω) 或低 泄漏电流(500 pA)特性。


特点

- 低导通电阻: 75Ω
- 低功耗: 3mW
- 采用 DI CMOS 工艺
- 过压保护: ±25V:

外引线排列图(顶视图)

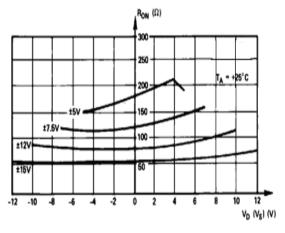
二、电路原理图

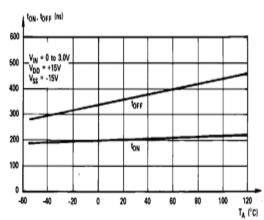
(输出二极等效图)

三、电特性

绝对最大额定值

电源电压: V_{DD} to GND: +17V V_{SS} to GND: -17V 推荐工作条件


电源电压 (V_{DD}): +15V


 (V_{SS}) : -15V

电参数(VD=+15V, Vss=-15V, 除非另有说明)

特性	符号	测试条件(除另有规定外,	F7512			单位
		TA 为常温)	最小	典型	最大	
模拟开关:						
漏源电阻	R _{on}	-10V≪V _D ≪+10V		25	100	Ω
		全温			175	
漏极关漏电流	I_D (I_S) $_{OFF}$	$V_{D} = -10V$, $V_{S} = +10V$		0. 5	5	- Na
		全温			500	
漏极开漏电流	I _D (I _S) _{ON}	$V_D = V_S = +10V$			10	Na
数字控制:						
输入低电平电压	V_{IH}				0.8	V
输入高电平电压	$V_{\scriptscriptstyle \mathrm{IL}}$		2. 4			V
输入高电平电流	I _{IH}	$V_{\scriptscriptstyle \mathrm{IN}}\!\!=\!\!V_{\scriptscriptstyle \mathrm{DD}}$			10	Na
输入低电平电流	IıL	V _{IN} =0			10	Na
电源特性:						
电源电流	$I_{ exttt{DD}}$	所有信号输入为 V _ℍ			800	μА
	I_{ss}	所有信号输入为 V _ℍ			800	μА

四、典型工作特性曲线

特性1 Ron与VD (Vs)的函数关系

特性 2 toN (toff) 与 TA的函数关系

五、典型应用图

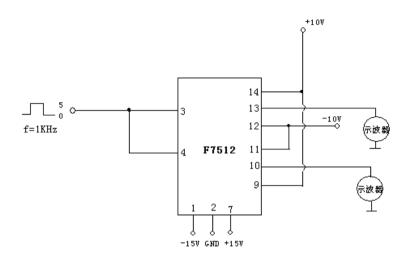


图 1 基本接线图

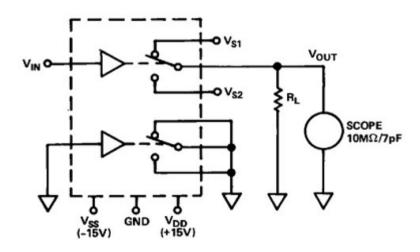


图 2 测试线路图