FA124 型低噪声高精度运算放大器

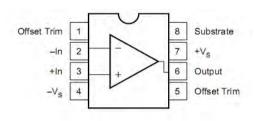
一、概述

FA124 是一种采用了介质隔离工艺的单片 FET 运算放大器。其极佳的直流与交流性能使其可在大多数仪器仪表的严苛条件下应用。

特点

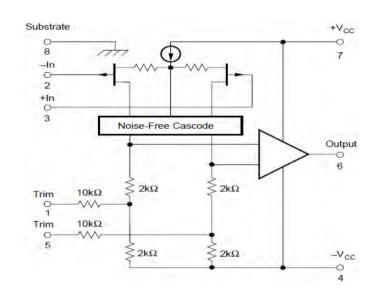
• 低噪声:6nV/√Hz (10kHz)

• 低偏置电流:最大1pA


• 低失调电压:最大250mV

• 低失调电压温漂:最大2mV/℃

• 高开环增益:最小120dB


• 高共模抑制比:最小100dB

外引线排列图(顶视图)

DIP、CSOP 型

二、电路原理图

三、电特性

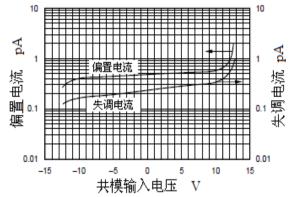
绝对最大额定值

电源电压 (Vs): ±18V

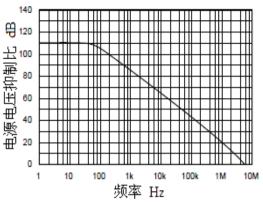
差模输入电压 (Vn): ±36V

输入电压范围 (V_i): ±18V

工作温度范围: -55℃~125℃

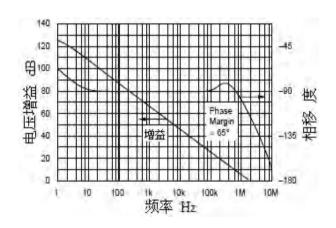

推荐工作条件

电源电压 (Vs): ±15V


电参数

特 性		符号	测试条件			规范值			}
			(除另有规定外, V_s =±15 V ,		T _A =全温)	最小	典型	最大	单位
输入失调电压		V_{IO}	V _{CM} =0V		25℃		±200	±800	μV
							±400	±1000	
输入失调电压温漂		αV _{IO}				-	±4	± 7.5	μV/°C
输入失调电流		I_{IO}	$V_{CM}=0V$		25℃	-	±1	±25	pА
								±600	
输入偏置电流		$\rm I_{IB}$	V_{CM} =0 V		25℃		±1	±25	pА
						==	±500	±800	
电源电压抑制比		K_{SVR}	V_s = $\pm 10V \sim \pm 18V$		25℃	88	110		dB
						84	100		
输入共模电压范围*		V_{ICR}			25℃	±10	±11		V
						±8	±10		
共模抑制比		K_{CMR}	Vin=±10V		25℃	92	110		dB
						86	100		
开环电压增益		$A_{\rm VD}$	$R_L \geqslant 2k \Omega$		25℃	106	125		dB
小信号单位增益带宽		GBW			25℃		1.5		MHz
全功率响应*			$20V_{P-P}$, $R_L=2k\Omega$		25℃	16	32		kHz
转换速率		SR	$V_O = \pm 10V$, $R_L = 2k \Omega$		25℃	1	1.6		V/µs
总谐波失真*		THD			25℃		0.0003		%
稳定时间*	0.1%	t_S	$G=-1$, $R_L=2k\Omega$		25℃		6		μs
心人口门口	0.01%		10V Step		25℃	==	10	==	μs
输出电压幅度		V_{o}	$R_L=2k \Omega$		25℃	±11	±12		V
输出电流		I_{O}	$V_{O} = \pm 10V$		25℃	± 5.5	±10		mA
输出阻抗*		$R_{\rm O}$	DC,开环		25℃		100		Ω
容性负载稳定性*		C_R	G=+1		25℃		1000		pF
输出短路电流		I_{OS}			25℃	10	40		mA
静态电流		I_s	IO=0mA	,	25℃		2.5	3.5	mA
输入噪声电压*		$V_{ m NI}$	25℃	f=10Hz~10kHz			0.7	1.2	μVrms
				f=0.1Hz~10Hz			1.6	3.3	μV_{P-P}
输入噪声电流*		I_{NI}	25℃	f=0.1Hz~10Hz			9.5	15	fA_{P-P}
输入噪声电压密度*		$V_{N^{\triangle_F}}$	25℃	f=10Hz			40	80	- nV∭Hz
				f=100Hz		==	15	40	
				f=1kHz			8	15	
				f=10kHz			6	8	
输入噪声	输入噪声电流密度*		25℃	$f=0.1Hz\sim20kHz$			0.5	0.8	fA∥Hz
注:标有	"*"号为参	*考参数,不	「作考核。						

四、典型工作特性曲线


特性1偏置/失调电流对共模输入电压

特性2 电源电压抑制比对频率

特性 3 共模抑制比对频率

特性 4 开环频率响应

五、典型应用图

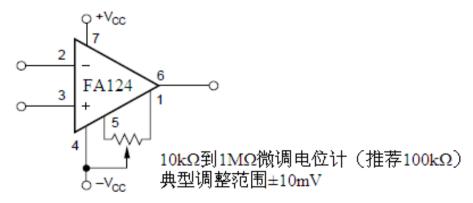


图 1 失调电压调零线路