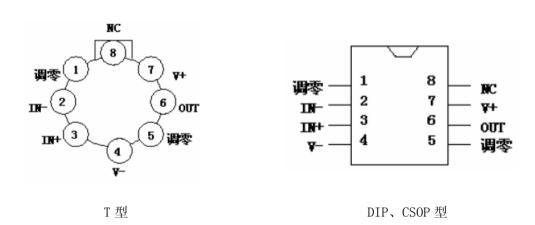


F548 型精密低功耗 BiFET 运算放大器


一、概述

F548 是一款低功耗、精密、单片运算放大器,偏置电流和静态电流均非常低,采用离子 植入 FET 和激光晶圆调整技术制造。在 F548 的整个共模电压范围内,保证输入偏置电流符合 额定性能。

特点

- 静态电流小
- 偏置电流小
- 低失调电压
- 低失调电压温漂

外引线排列图 (顶视图)

二、电特性

绝对最大额定值

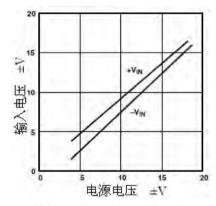
电源电压 (Vs): ±18V

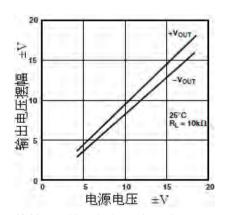
共模输入电压: ±18V

差分输入电压: ±V。

工作温度范围 (T₄): -55℃~+125℃

推荐工作条件


电源电压 (Vs): ±15V


由参数	$(V_c = +15V_c)$	除非另有说明)
	(1)	

特 性	符号	测试条件(除另有规定外, V _s =±15V, T ₄ =全温)	典型	最大	单位
输入失调电压	V_{IO}	R_s =10k Ω , T_A =25 $^{\circ}$ C	_	2	mV
				3	
输入失调电压温漂	αV_{10}		_	20	μV/°C
输入偏置电流	${ m I}_{{\scriptscriptstyle { m IB}}}$	T _A =25℃	_	30	nA
			_	60	nA
输入失调电流	I_{10}	T _A =25 ℃		10	nA
				20	nA
输入失调电流温漂	α I ₁₀			300	nA/℃
大信号电压增益	$A_{\scriptscriptstyle m VD}$	V_0 = $\pm 10V$, R_L = $10k \Omega$	96		dB
入信与电压增益			86		
++ + + + + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	K _{CMR}		80		dB
共模抑制比			70		
电源电压抑制比	K _{svr}	T _A =25°C	76		dB
			66		
输出电压摆幅	V_{OPP}	$R_i=10k \Omega$	±12		V
	V 0PP	W10K 22	12		V
电源电流	I_s	T₁=25°C		1.7	- mA
		_		2	

三、典型工作特性曲线

特性1 输入电压对电源电压

特性 2 输出摆幅对电源电压

四、典型应用图

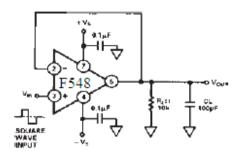


图 1 单位增益跟随器