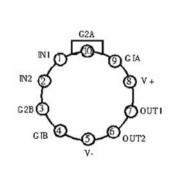


F733 型增益可变视频放大器

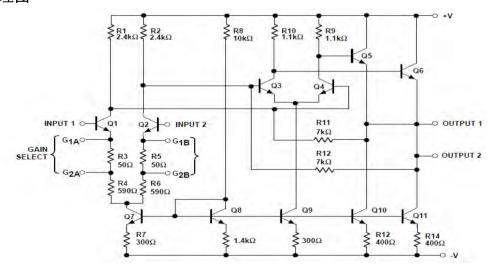

一、概述

F733 型宽带放大器具有较高的输入阻抗和较低的输出阻抗;由于采用了差分输入和有源偏置,因此具有较好直流稳定性,整个电路的频带、增益较高。其下限可达直流,上限值可达 100MHz 以上,因此使用范围较广。

特点

- 有良好的频率特性,下达直流,上达 120MHz 都具有较好的放大能力
- 改变差分输入级的射极电阻,可以改变增益及带宽

外形排列图 (顶视图)


TO-10 型

N2 1 14 INI
NC 2 13 NC
G2B 3 12 G2A
GIB 4 11 GIA
V- 5 10 V+
NC 6 9 NC
OUT2 7 8 OUT1

DIP、CSOP型

注 1: 管脚 G1A 和 G1B 连接在一起。 注 2: 管脚 G2A 和 G2B 连接在一起。

二、电路原理图

三、电特性

绝对最大额定值

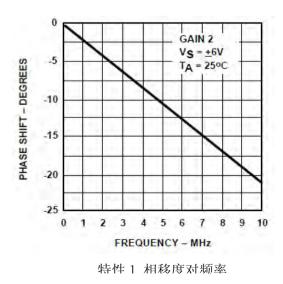
电源电压 (V_s): ±8V

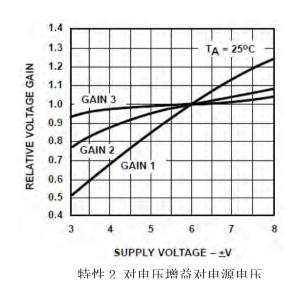
差模输入电压(V_{ID}): ±5V

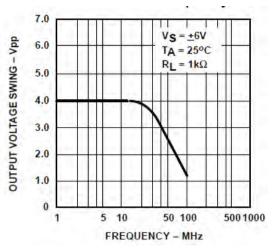
工作温度范围 (T_A): -55℃~125℃ (F733)

0°C∼70°C (F733C)

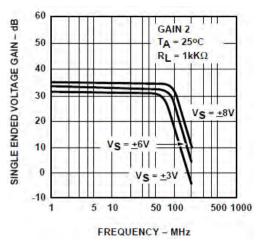
推荐工作条件


电源电压 (V_s): ±6V


电特性


特	生	符号	测试条件(除另有 t V_s = $\pm 6V$, T_A = t		F733		F733C		单位
			, = 0, , 1 _A		最小	最大	最小	最大	
差分 电压 增益	A_{VD1}	$ m A_{VD}$	$R_L=2k \Omega$, $V_O=3V$	25℃	300	500	250	600	倍
	VDI				200	600	250	600	
	$A_{ m VD2}$			25℃	90	110	80	120	
	Ti _{VD2}				80	120	80	120	
				25℃	9	11	8	12	
	A_{VD3}				8		8		
	A_{VD1}	BW		25℃	40(典型值)		40(典型值)		MHz
带宽	$A_{ m VD2}$				90(典型值)		90(典型值)		
	A_{VD3}				120(典型值)		120(典型值)		
	A_{VD1}	t _r	V _O =1V	25℃		10		12	ns
上升 时间*	A_{VD2}								
	A_{VD3}								
	A _{VD1}								
延迟			$V_{O}=1V$	25℃		10		10	
时间*	$\Lambda_{ m VD2}$	t _d	V _O -1V	25 C		10		10	ns
ոյ լոյ	A _{VD3}			0.5%	200		4.0		
输入 电阻*	A_{VD1}	$R_{\rm I}$		25℃	20		10		k Ω
	$A_{ m VD2}$			25℃	20		10		
	\\D2				8		8		
	A_{VD3}			25℃	20		10		
输入电容*	A_{VD2}	$C_{\rm I}$		25℃	20(典	·型值)	20(典	型值)	рF

输入失调电流		I_{IO}		25℃		3		5	μΑ	
						5		6		
输入偏置电流		${ m I}_{ m IB}$		25℃	==	20	==	30	μΑ	
						40		40		
输出电压幅度		$ m V_{OPP}$	$R_L = 2k \Omega$	25℃	3.0		3.0		V	
					2.5	-	2.5	1		
共模抑制比	A_{VD}	K _{CMR}	$V_{CM} = \pm 1V$,	25℃	60		60		dB	
	2		f≤100kΩ		50	-	50	1		
电源电压	抑制比	A_{VD}	K _{CVR}	$\triangle V_s = \pm 0.5V$		50		50		dB
输出	失调			$R_L = \infty$			1.5		1.5	
失调			V_{oo}		25℃		1.0		1.5	V
电压*	A _{VD2} 和	A_{VD3}				==	1.2	==	1.5	
.1.	电源电流		I_S $R_L = \infty$	$R_L = \infty$	25℃		24		24	mA
电							27		27	
输出	输出共模电压*		V _{oc}	$R_L = \infty$	25℃	2.4		2.4		V
输品	输出电流*		I_{O}		25℃	2.5		2.5		mA
输出电阻*		$R_{\rm O}$		25℃	20(典型值) 20		20(典	20(典型值)		
差模输入电压*		$V_{\rm ID}$				32		32	V	
注:标律	有"*"号		参数,不	下作考核。						


四、典型工作特性曲线

特性3 输出电压摆幅对频率

特性 4 单端电压增益对频率

五、典型应用图

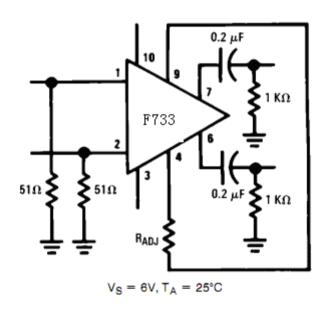


图1电压增益调整电路